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Static and dynamic linear analyses of axisymmetric capillary instabilities in textured nematic
liquid crystalline fibres are performed using the equations of nemato-statics and inviscid
nemato-dynamics. Three representative textures, viz. axial, onion, and radial, are analysed to
show all possible effects of Frank gradient elasticity on the wavelength selection and growth
rate of peristaltic modes driven by surface area reduction. It is found that Frank elasticity
may tend to stabilize or destabilize the fibre, depending on the initial fibre texture. Axial
textures tend to stabilize the fibre through the director splay–bend distortions driven by
surface tilting. Onion textures are destabilized by decreasing azimuthal bend elastic energy
caused by surface displacement. Radial textures exhibit a stabilizing tilt mechanism due to
bend modes and a destabilizing displacement mechanism due to splay modes, but the former
is predicted to be dominant. The static analysis provides good estimates of the instability
thresholds while the transient energy balance provides information on the fastest growing
modes. The static and dynamic results are compared and shown to be fully consistent. The
couplings between splay and/or bend distortions, surface tilting, and surface displacement in
nematic fibres are characterized and used to explain the deviations from the classical
Rayleigh instability.

1. Introduction

The current wide use of thin fibres, films and

multiphase material systems demands a fundamental

understanding of capillary hydrodynamics, interfacial

thermodynamics, and interfacial transport phenomena

[1–3]. Many new liquid crystal applications involving

dominant interfacial effects such as mesophase fibre

spinning [4] and formation of in situ liquid crystal

polymer composites [5] likewise require a fundamental

understanding of capillary hydrodynamics. Although

interfacial liquid crystal thermodynamics is a highly

developed field [6–14], non-equilibrium surface phe-

nomena are not well understood and/or characterized.

Force balance equations describing static [15–20] and

dynamical interfacial phenomena [17, 20] are available

but have not been widely used in describing the mecha-

nics of fibre and film microstructures. This paper is

concerned with the stability of a nematic liquid

crystalline fibre.

A question of fundamental importance in capillary

instabilities of liquid crystalline fibres is to identify

possible mechanisms that promote stability and hence

widen the processing windows for these materials. In

isotropic fluid fibres, the surface tension driven fiber-to-

droplet transformation is well understood and known

as the Rayleigh instability [1, 2, 21]. In the static

thermodynamical analysis, the Rayleigh threshold

shows that the isotropic fibre is unstable for the

wavelength of the surface disturbance exceeding the

perimeter of the fibre. Meanwhile, Rayleigh also

predicted a fastest growing wavelength that governs

the capillary instability of an isotropic fluid fibre and

thus makes the fibre break up into a trail of droplets

with a specific size in the linear regime using a transient

analysis. For isotropic fluid fibres, only surface area

reduction plays a role to promote instability since the

surface energy decreases by decreasing the surface

area [5]. On the other hand, an essential characteristic

of nematic liquid crystals is mechanical anisotropy and

bulk gradient elasticity [22]. Bulk gradient elasticity

(also known as Frank elasticity) in nematic liquid

crystals is due to orientation gradients and hence is

known as curvature elasticity. The anisotropies in the

viscoelastic bulk properties of nematic liquid crystals

are well understood theoretically [23, 24] and experi-

mentally [22], and the anisotropies in the surface elastic

properties of nematics are also well characterized [7, 9].

Capillary instabilities in liquid crystalline fibres have*Author for correspondence; e-mail: alejandro.rey@mcgill.ca
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been analysed with surface anisotropies [25–27], and in

this paper we analyse the bulk anisotropy effects on the

instability mechanisms and thresholds. For clarifica-

tion, we note that anisotropy in this paper refers to

the unique direction imposed by the average molecular

orientation, known as the nematic director, and hence

different director fields correspond to different types

of anisotropy. Thermodynamic stability analyses of
nematic LC fibres have been performed for different

nematic textures [5, 28]. In this paper we extend the

previous work by considering the time evolution of

unstable modes in axial, onion, and radial textures,

as well as by establishing the correspondence between

instability criteria found using thermodynamical and

dynamical analyses. The fibre is assumed to have

nematic orientation, where the rod-like molecules are

more or less parallel to each other but otherwise free to

translate past each other [22]. As mentioned above the

theories and analyses are based on transient integral

energy balances as well as free-energy calculations so

that we capture growth rate patterns of instabilities as

well as static instability thresholds.
The specific objectives of this paper are to: (1)

formulate a thermodynamic model for the static

analysis and present an integral energy balance equa-

tion for the transient analysis that describes and

identifies the bulk elastic energy contributions to

capillary instabilities of nematic liquid crystalline

fibres; (2) derive instability criteria for static and

transient analyses in three characteristic nematic

textures and elucidate the physical mechanisms that

promote and suppress the instabilities; (3) establish

parametric conditions that lead to capillary instabilities;

(4) characterize the nematic orientation contributions

to capillary instabilities; (5) relate the Frank distortion

energy contribution in the static analysis to that in the
transient analysis.

The organization of this paper is as follows. In

§ 2, we present the thermodynamic model for static

analysis, the integral energy balance equation for

transient analysis, and the equilibrium condition for

distorted director fields. In § 3, we derive the instability

criteria for static and transient energy analyses in three

characteristic nematic textures. The instability mechan-

isms for static and transient analyses are clearly

identified and discussed in terms of Frank distortion

elastic energy. § 4 presents conclusions.

2. Governing equations

2.1. Geometry and texture of nematic liquid crystalline

fibres

To define the state of a nematic liquid crystalline

fibre completely, both the geometry of the fibre and the

spatial orientational order of the nematic liquid crystal

must be specified. More specifically we define: Nematic

Liquid Crystalline Fibrew{n, R, N}, where n is the

nematic director field [22], R is the fibre radius, and N

is the unit surface normal vector. For an isotropic

material fibre, only the geometry is necessary, i.e. {R, N}.

Figure 1 shows definitions of the fibre geometry.

Figure 1 (a) shows that the fibre is initially a uniform

cylinder with radius a, with its axis collinear with the

z-axis of a cylindrical coordinate system. In the cross-

sectional view, unit vectors ir and ih are shown in the

direction of the r- and h-axes, respectively. Figure 1 (b)

shows the periodically deformed fibre with unit surface

normal N, radius R and wavelength l. The fiber radius

R and unit surface normal N periodically change with

a wavelength l along the z-direction. In this paper,

we apply our analysis to three characteristic nematic

textures of initially constant director fields, denoted as

axial, onion, and radial textures, and accordingly the

nematic fibre with each texture is called axial fibre,

onion fibre, and radial fibre, respectively. Figure 2

shows the schematic of undeformed fibres with (a)

axial, (b) onion and (c) radial textures. In the cross-

sectional view, the director field n is shown as dots,

curves, or lines in each texture. The fibre nematic

texture is expressed by the director field using unit

vectors iz, ih and ir in the direction of the z-, h- and

r-axes, respectively. Defect cores are seen at the centre

of onion and radial textures. In this paper, we assume

that these defects have already nucleated.

It is noted that escaped radial textures in cylindri-

cal cavities are well understood experimentally and

Figure 1. (a) Unperturbed fibre with radius a is aligned in
the z-axis of a cylindrical coordinate system (r, h, z).
Cross-sectional view in Cartesian coordinates (x, y)
shows the unit vectors ir and ih and azimuthal angle h.
(b) Periodically deformed axisymmetric fibre with unit
surface normal vector N, radius R and wavelength l.
Fibre radius R and unit surface normal N periodically
change with wavelength l along the z-direction. The
figure is representative of the peristaltic mode.
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theoretically. The escaped radial texture where the

director escapes into the third dimension along the

cylinder axis has been shown to be more stable than

the radial texture with a line defect at the centre [22, 29,

30], and was observed for MBBA in cylindrical cavities

[30, 31]. The escaped radial textures with singular point

defects along the cylinder axis were also observed in

cylindrical cavities of 20y200 mm in radius by optical

studies [31, 32] and of as small as 0.3 mm in radius by

deuteron NMR, where the density of singular point

defects was obtained in the strong anchoring limit [33].

Meanwhile, the radial texture with a line defect at the

centre of the fibre can also be stable, for instance, in the

vicinity of a nematic/smectic A transition [22] or when

the fibre radius is small enough [22, 29, 30].

Linear stability analysis is used to describe peristaltic

axisymmetric capillary instabilities in nematic liquid

crystalline fibres for the three textures. Static energy

analysis based on thermodynamic stability is presented

to obtain a critical wavelength for the capillary instabi-

lity while transient energy analysis is used to construct

a growth rate curve and thus obtain the fastest growing

wavelength as well as to establish the consistency of the

results. Twist distortions are beyond the scope of this

paper, and only splay and/or bend modes are taken into

account. Likewise, chiral non-axisymmetric distortion

modes are not taken into account in this paper.

2.2. Static energy analysis

We consider the thermodynamic stability of an

infinitely long cylindrical nematic LC fibre subjected

to infinitesimal periodic surface disturbances. The

nematic liquid crystal is assumed to be incompressible,

and its initial orientation is homogeneous in each of

three characteristic textures: axial, onion and radial.

Then, the director fields evolve as the shape of nematic

fibres changes.

As seen in figure 1 (b), the fiber radius R and the unit

surface normal N change along the z-direction. In the

static analysis, the fibre shape with a periodic surface

disturbance is given at any position z by

R zð Þ~R0zj zð Þ: ð1Þ
The periodic surface disturbance j is expressed as

j zð Þ~j0 cos kz½ � ð2Þ
where j0 is the initial amplitude of the disturbance and

k the axial wavenumber. The average fibre radius R0 in

equation (1) is required, for a fixed volume, to be

R0~a 1{
j2

0

2a2

 !1
2

&a 1{
j2

0

4a2

 !
ð3Þ

where the approximation is valid in the linear regime of

the capillary instability, i.e. when

j

a
%1: ð4Þ

The unit surface normal N is given in the linear regime

by

N~ir{
LR

Lz
iz: ð5Þ

During the capillary instability, the fibre geometry

evolution is captured by the principal radii of curvature

(Rrh, Rrz) as well as the fibre radius R and its unit

surface normal N. In the linear regime, the principal

radii of the curvature are expressed as [21]

1

Rrh
~

1

R
;

1

Rrz

~{
L2R

Lz2
: ð6Þ

To discuss capillary instabilities, it is also useful to

introduce the following expression for the mean

curvature H in cylindrical coordinates:

H~{
1

2
+s
:N~{

1

2

1

Rrh
z

1

Rrz

� �
ð7Þ

~{
1

2

1

R
{

L2R

Lz2

 !
ð8Þ

where +s is the surface gradient operator.

2.2.1. Distorted director fields

As seen in figure 2 (a), in the axial texture, the

director is initially oriented along the fibre axis and it is

given by

nA
0 ~iz ð9Þ

where the superscript A denotes the axial texture and

the subscript 0 the initial director field. Likewise, in

figure 2 (b), the director is initially along the azimuthal

Figure 2. Schematic of undeformed fibres with (a) axial, (b)
onion and (c) radial textures. In the cross-sectional view,
the director field n is shown as dots, curves or lines in
each texture. Defect cores are seen at the centre of onion
and radial textures. The corresponding director field is
shown on the right of the figures.
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direction in the onion texture:

nO
0 ~ih ð10Þ

and, in figure 2 (c), along the fibre radius in the radial

texture:

nR
0 ~ir ð11Þ

where the superscripts O and R denote the onion and

radial textures, respectively. The director field in each

texture is expected to evolve as the nematic fibres are

subjected to infinitesimal surface disturbances. Since

the surface disturbances are very small, only a slight

distortion from the initial director field is assumed [22]:

n~n0ze ð12Þ
where n0 is the initial director field and e is the slight

distortion normal to n0.

To find the distorted director field in each texture, we

apply conditions for equilibrium in the nematic bulk by

introducing the distortion free energy. The distortion

free energy density, known as Frank distortion energy,

stored in a nematic LC fibre is simplified using one

constant approximation to [22]

Fd~
K

2
+:nð Þ2z +|nð Þ2

h i
ð13Þ

where Fd is the Frank distortion free energy density

and K the Frank elastic constant in the one constant

approximation. In equilibrium, the following condition

is satisfied:

n|h~0 ð14Þ
where h is the molecular field expressed as [22]

h~{
LFd

Ln
{+:

LFd

L +nð Þ

� �

~K+2n:

ð15Þ

Equation (14) means that the director is parallel to the

molecular field in equilibrium.

2.2.2. Free energy of nematic liquid crystalline fibres

The total free energy density for a nematic LC fibre

with distorted director orientation is given by [22]:

F~FdzFs~
K

2
+:nð Þ2z +|nð Þ2

h i
zcd r{Rð Þ ð16Þ

where Fs is the surface free energy density for the

surface director orientation along the easy axis, c the

surface free energy density, and d the Dirac delta

function. Since the strong anchoring condition is

assumed at the fibre surface, the surface free energy

density c only represents the isotropic surface tension.

Thus, the surface free energy contribution to the total

free energy contains no elastic distortion effect and

remains unchanged in the three nematic textures.

Meanwhile, the Frank distortion energy contribution

differs in one texture from another since the director

variation in the bulk of the fibre is the origin of the

elastic distortion energy.

2.3. Transient energy analysis

We consider the transient stability of an infinitely

long cylindrical nematic LC fibre subjected to infinite-

simal periodic surface disturbances. The geometries of

the LC fibre and the director field are a function of time

as well as of space. In this section, the general equation

of the transient integral energy balance is derived.
In the transient analysis, the fibre shape at any time t

and position z is given by

R z, tð Þ~R0zj z, tð Þ: ð17Þ
The surface disturbance j is expressed by assuming its

exponential growth as

j z, tð Þ~j0 cos kz½ �exp atð Þ ð18Þ
where a is the growth rate for real and positive values.

2.3.1. Transient integral energy balance equation

The conservation of energy under isothermal condi-

tion, and under the absence of body forces, director

inertia and director surface force is given by [10]:

d

dt

ð
V

1

2
ru:uzFd

� �
dVz

ð
V

T _SS dV~

ð
A

N:t:u dA ð19Þ

where d
dt

and the superposed dot denote material time

derivatives, r is the density, u the velocity, T the

temperature, S the entropy per unit volume, t the stress

tensor, V the volume, and A the surface area. If the

only entropy source is the viscous dissipation, the

second integral in equation (19) becomes [22]ð
V

T _SS dV~

ð
V

A : t u dV : ð20Þ

The rate of deformation tensor A is expressed as

A~
1

2
+uð Þz +uð ÞT

h i
ð21Þ

where the superscript T denotes the transpose. The

viscous stress tensor t u is given as

t u~2mA ð22Þ
where m is the viscosity. It is noted that in the linear

regime distortions are insignificant and the rheology is

Newtonian [22]. By making use of equations (21) and

(22) in (20), equation (19) can be rewritten in the linear

1274 A.-G. Cheong and A. D. Rey
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regime such thatð
V

L
Lt

1

2
ru:u

� �
z _FF d

� �
dV

z

ð
V

1

2
m +uð Þz +uð ÞT
h i

: +uð Þz +uð ÞT
h i

dV

~

ð
A

N:t:u dA:

ð23Þ

Because strong anchoring condition is imposed at

the fibre surface, the surface behaves like an isotropic

material and only the contribution of Ḟd reflects the

anisotropic elasticity of the LC fibre. Using equa-

tion (13), the contribution of Ḟd in (23) is expressed in

terms of +n:

_FFd ~
LFd

L +nð Þ :
d

dt
+nð ÞT~K +:nð Þ trDð Þz+n : D{+ n : DT

� �
ð24Þ

where trD denotes the trace of tensor D and

D:
d

dt
+nð ÞT ~

L +nð ÞT

Lt
z u:+ð Þ +nð ÞT : ð25Þ

The contribution of D to Ḟd appears to be different in

the three nematic textures, which allows for identifying

the contributions to elastic storage due to bulk orienta-

tion distortions. In this paper, we investigate the effect

of anisotropic elasticity through the Frank distortion

energy on the capillary instability of the LC fibres

displaying the axial, onion and radial textures. The

LC fibres are assumed inviscid so that the viscous

dissipation term in equation (23) drops out and the

transient integral energy balance equation becomesð
V

L
Lt

1

2
ru:u

� �
z _FFd

� �
dV~

ð
A

N:t:u dA: ð26Þ

The role of viscosity on the capillary instability of LC

fibres has been studied with the governing nemato-

capillary equations [25].

3. Results and discussion

The characterization of linear capillary instabilities

in nematic fibres is based on the observation that two

mechanisms are associated with the coupling between

director, and hence the Frank distortion (gradient)

elasticity, and the geometrical changes in the fibre: (i)

surface tilting and (ii) surface displacement mechan-

isms. These two mechanisms are embedded in total

distortion energy equations for statics:

F d~

ð
V

Fd dV ð27Þ

and for dynamics:

dF d

dt
~

ð
V tð Þ

_FF d dV ð28Þ

and are activated for specific textures, as follows.

(i) Surface tilting mechanism (MT). The surface

tilting mechanism is activated when surface

tilting changes the director orientation. When

splay and/or bend distortions arise due to the

surface tilting driven by the re-orientation of the

fibre surface, they tend to stabilize the fibres by

increasing the Frank distortion energy. Hence,

the MT mechanism always promotes stability.

(ii) Surface displacement mechanism (MD). The

surface displacement mechanism is character-

ized by decreasing the Frank distortion energy

and thus destabilizing the nematic fibres. When

splay and/or bend distortions are uncoupled

from the surface orientation, the surface dis-

placement may destabilize the fibres by decreas-

ing the Frank distortion energy.

In what follows we discuss these two different

instability mechanisms in axial, onion and radial

fibres for statics and dynamics, and determine the

parametric dependence of the nematic capillary instabil-

ities on each mechanism of the Frank distortion

elasticity.

3.1. Static energy analysis

In this section we present the thermodynamic

analysis of the nematic fibre capillary instability for

the axial, onion, and radial textures and establish

the parametric conditions that lead to the Rayleigh

instability.

Using Eqs. (1), (2) and (3), the surface free energy of

the deformed LC fibre, F s, f , is obtained by integrating

the second term in equation (16) over the surface with a

unit wavelength, l~2p/k, to order j2
0:

F s, f ~c2p

ðl

0

R zð Þ 1z
dR

dz

� �2
" #1

2

dz

~c2pal{c2pal
j2

0

4a2
1{

4p2a2

l2

� �
:

ð29Þ

Hence, the surface free energy change, Ds, is given as

Ds:F s, f {F s, i~{c2pal
j2

0

4a2
1{

4p2a2

l2

� �

~{cp2j2
0

1

ka
1{k2a2
� � ð30Þ

where F s, i is the initial surface free energy of the
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cylindrical fibre:

F s, i~c2pal: ð31Þ

3.1.1. Axial fibres

The distorted director field for each texture is

obtained by solving equation (14) with (15). Using

equations (9) and (12), the distorted director field of the

initially axial texture can be written as

nA r, zð Þ~izznr r, zð Þir ð32Þ
where nr is the slight splay–bend director distortion as a

function of r and z. Substituting equations (32) and (15)

into (14) results in

+2n
� �

r
~

L2nr

Lr2
z

1

r

Lnr

Lr
z

L2nr

Lz2
{

nr

r2
~0 ð33Þ

where (+2n)r is the r-component of the vector +2n. By

solving equation (33) and using periodic and finite

boundary conditions in the z- and r-directions,

respectively, the splay–bend distortion is found to be

nr r, zð Þ~{j0k sin kz½ � I1 kr½ �
I1 ka½ � ð34Þ

where I1[x] is the modified Bessel function of the first

kind of order 1. In deriving equation (34), the strong

anchoring condition that the director field is parallel to

the planar easy axis (perpendicular to the unit surface

normal) at the surface is applied. Thus, the distorted

director field for the axial texture is

nA r, zð Þ~iz{j0k sin kz½ � I1 kr½ �
I1 ka½ � ir: ð35Þ

The elastic energy for the axial fibre is initially zero

because no director gradients initially exist, and only

arises with the distorted director field due to surface

tilting. Using equation (35), the elastic distortion free

energy, F d, f , in equation (27) is obtained by integrating

the first term in equations (16), over the volume with a

unit wavelength, l~ 2p
k

, to order j2
0:

F d, f ~2p

ð2p
k

0

ðR zð Þ

0

K

2
+:nð Þ2z +|nð Þ2

h i
r dr dz

~p2j2
0

K

a
k2a2 I0 ka½ �

I1 ka½ �

ð36Þ

where I0[x] is the modified Bessel function of the first

kind of order 0. The distortion free energy change, Dd,

is given as

Dd:F d, f {F d, i~p2j2
0

K

a
k2a2 I0 ka½ �

I1 ka½ � : ð37Þ

From equations (30) and (37), the net change in the

total free energy, D, for the axial fibre is given by

D~DszDd~p2j2
0

c

ka
k2a2{1
� �

z
K

ac
k3a3 I0 ka½ �

I1 ka½ �

� �
: ð38Þ

By setting

D~0, ð39Þ
meaning that no total free energy change occurs, the

dimensionless critical wavenumber (ka)c and the critical

wavelength lc are found as

kað Þc ~
2pa

lc

~
1

1z2
K

ca

� �1
2

, lc~lR 1z2
K

ca

� �1
2

, ð40Þ

lR~2pa ð41Þ
where lR is the critical wavelength for isotropic liquid

fibres, known as the Rayleigh capillary instability

threshold. From equation (40), the net effect of Frank

elasticity is to stabilize the fibre by splay–bend

distortions in the rz-plane. In other words, the surface

tilting mechanism, MT, acting through splay–bend

modes due to nr(r, z) created on the rz-plane tends to

stabilize the fibre by increasing the Frank distortion

energy:

MT : nA
0 ~ 0, 0, 1ð Þ[nA~ nr r, zð Þ, 0, 1ð Þ: ð42Þ

3.1.2. Onion fibres

In the onion texture, axial (z-directional) periodic

surface disturbances do not affect the azimuthal

(h-directional) director field because the fibre shape

and the director field are uncoupled. Thus, the director

field remains unchanged by changes in the geometry:

nO~nO
0 ~ih: ð43Þ

The Frank elasticity for the onion texture is pure

bend and arises because the molecules bend azimuthally

(see figure 2 (b)); then the initial elastic distortion

energy F d, i is obtained as

F d, i~2p

ð2p
k

0

ða

r0

K

2
+|nð Þ2r dr dz~pK

2p

k
ln

a

r0
ð44Þ

where r0 is the defect core radius [22]. Because of the

existence of the defect core at the centre of the onion

fibre, the lower integration limit in the r-direction is r0.

It is known that the defect core radius r0 is in the order

of nanometers [22]. Although the director field remains

unchanged during the fibre deformation, the elastic

distortion energy F d, f changes due to the fibre
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displacements and is obtained to order j2
0:

F d, f ~2p

ð2p
k

0

ðR zð Þ

r0

K

2
+|nð Þ2r dr dz

~pK
2p

k
ln

a

r0
{

j2
0

2a2

 !
:

ð45Þ

The distortion free energy change Dd is given as

Dd~{p2j2
0

K

a

1

ka
: ð46Þ

From equations (30) and (46), the net change in the

total free energy D for the onion fibre is given by

D~p2j2
0

c

ka
k2a2{1
� �

{
K

ac

� �
: ð47Þ

Using equation (39), the dimensionless critical wave-

number and the critical wavelength are found as

kað Þc ~
2pa

lc

~ 1z
K

ca

� �1
2

, lc~
lR

1z
K

ca

� �1
2

: ð48Þ

From equation (48), it is found that the net effect of

Frank elasticity is to destabilize the fibre by reducing

azimuthal bend energy. In other words, the surface

displacement mechanism, MD, acting on the azimuthal

bend modes tends to destabilize the fibre by decreasing

the Frank distortion energy:

MD for nO~ 0, 1, 0ð Þ~constant :ð
V

Fd nO
� �

dV[

ð
V�

Fd nO
� �

dV �
ð49Þ

where V* is the fibre volume with surface disturbances.

3.1.3. Radial fibres

Using equations (11) and (12), the distorted director

field of the initially radial texture can be written as

nR r, zð Þ~irznz r, zð Þiz ð50Þ
where nz is the slight bend distortion as a function of r

and z. Substituting equations (50) and (15) into (14)

results in

+2n
� �

z
{nz +2n

� �
r
~

L2nz

Lr2
z

1

r

Lnz

Lr
z

L2nz

Lz2
z

nz

r2
~0 ð51Þ

where (+2n)z is the z-component of the vector +2n.

Since the second partial derivative of nz with respect to

z in equation (51) is much smaller than the other terms

when estimating the order of magnitude, adopting the

long wavelength approximation, i.e.

l

a
&1 ð52Þ

enables us to solve a quasi-one-dimensional ordinary

differential equation:

L2nz

Lr2
z

1

r

Lnz

Lr
z

nz

r2
~0: ð53Þ

By using boundary conditions that the director field is

perpendicular to the fibre axis at the defect core and

periodic and parallel to the unit normal at the surface,

the bend distortion is found to be

nz r, zð Þ~j0k sin kz½ �
sin ln

r

r0

� �

sin ln
a

r0

� � : ð54Þ

Thus, the distorted director field for the radial texture is

nR r, zð Þ~irzj0k sin kz½ �
sin ln

r

r0

� �

sin ln
a

r0

� � iz: ð55Þ

Therefore, in the long wavelength approximation, bend

distortions on the rz-plane are taken into account. The

Frank elasticity for the initially radial texture is pure

splay and arises because the molecules splay radially,

see figure 2 (c); then the initial elastic distortion energy

F d, i is obtained as

F d, i~2p

ð2p
k

0

ða

r0

K

2
+:nð Þ2r dr dz~pK

2p

k
ln

a

r0

� �
: ð56Þ

It is also noted that the lower integration limit in the r-

direction is r0 because of the existence of the defect core

at the centre of the radial fibre. Using equation (55), the

elastic distortion free energy F d, f is obtained for the

deformed fibre to order j2
0:

F d, f ~2p

ð2p
k

0

ðR zð Þ

r0

K

2
+:nð Þ2z +|nð Þ2

h i
r dr dz

~pK
2p

k
ln

a

r0

{
j2

0

2a2
z

1

4
j2

0k2
ln

a

r0

sin2 ln
a

r0

� �z

cos ln
a

r0

� �

sin ln
a

r0

� �
2
664

3
775

8>><
>>:

9>>=
>>;:

The distortion free energy change Dd is given as

Dd~p2j2
0

K

a

1

ka
{1z

1

2
k2a2

ln
a

r0

sin2 ln
a

r0

� �z

cos ln
a

r0

� �

sin ln
a

r0

� �
2
664

3
775

8>><
>>:

9>>=
>>;:

From equations (30) and (58), the net change in the

total free energy D for the radial fibre is given by

D~p2j2
0

c

ka
k2a2{1
� �

{
K

ac
1{

1

2
k2a2

ln
a

r0

sin2 ln
a

r0

� �z

cos ln
a

r0

� �

sin ln
a

r0

� �
2
664

3
775

8>><
>>:

9>>=
>>;

2
664

3
775:

Using equation (39), the dimensionless critical wave

(57)

(58)

(59)
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number and the critical wavelength are found as

kað Þc ~
2pa

lc

~
1zS

1zB

� �1
2

, lc~lR

1zB

1zS

� �1
2

ð60Þ

S~
K

ac
, B~

1

2

K

ac

ln
a

r0

sin2 ln
a

r0

� �z

cos ln
a

r0

� �

sin ln
a

r0

� �
2
664

3
775: ð61Þ

From equation (60), the radial texture contains two

competing elastic modes: the destabilizing splay Frank

elasticity mode, S, causing a decrease in the critical

wavelength and the stabilizing bend Frank elasticity

mode, B, causing an increase in the critical wavelength.

Using equation (13), the splay elastic energy scales

with 1/r2 and the surface displacement plays a role to

redistribute the nematic LC away from the high energy

core while the bend elasticity arises due to the director

variation along the fibre axis driven by surface shape

undulation, and thus increases the Frank elastic energy

by director distortions. In other words, the surface

displacement mechanism, MD, acting on the splay

modes on the rh-plane, tends to destabilize the fibre by

decreasing the Frank distortion energy:

MD for nR~ 1, 0, 0ð Þ~constant :ð
V

Fd nR
� �

dV[

ð
V�

Fd nR
� �

dV�
ð62Þ

while the surface tilting mechanism, MT, acting through

bend modes due to nz(r, z) created on the rz-plane tends

to stabilize the fibre by increasing the Frank distortion

energy:

MT : nR
0 ~ 1, 0, 0ð Þ[nR~ 1, 0, nz r, zð Þð Þ: ð63Þ

For micrometer-size fibres, we assume that a~1025 m

and r0~1029 m [22]. Using these values, the splay mode

S is approximately one hundred times smaller than the

bend mode B so that the net effect of Frank elasticity

on the capillary instability is to increase the critical

wavelength above the Rayleigh threshold.

Figure 3 shows the scaled critical wavelength lc/lR as

a function of the dimensionless energy ratio K/ac; the

dimensionless number K/ac is the ratio of the bulk

elastic energy to the isotropic surface energy, for the

three nematic textures. In both plots, the reference

horizontal line corresponds to the Rayleigh instability

threshold for isotropic materials. Figure 3 (a) shows the

global features of the effect of texture on the instability.

The axial and radial textures tend to stabilize the fibre

while the onion texture tends to destabilize the fibre.

Thus, the effect of the energy ratio K/ac on the

instability is texture dependent. The strongest effect is

for the axial texture, where no saturation is observed.

This is because the stabilizing surface tilting mechanism,

MT, increases monotonically. On the other hand, for

the radial texture, as the energy ratio increases above

a value of approximately ten, the stabilizing surface

tilting mechanism, MT, and destabilizing surface dis-

placement mechanism, MD, described above cancel

each other, and the dimensionless critical threshold

saturates at a value of 9.97. The threshold of the onion

texture decreases to zero, since only the purely destabi-

lizing surface displacement mechanism, MD, is present.

For nematic liquid crystals and micrometer-size fibres,

it is expected that K/acƒ1. For typical low molecular

mass nematic LC fibres at temperatures sufficiently

far from the smectic A transition (if any), using c~

1022 N m21 [7], K~10211 J m21 [34] and a~1025 m, we

find K
ac ~10{4. Meanwhile, nematic liquid crystalline

polymers can have elastic constants of orders of magni-

tude up to 1028 J m21 [35]. For mesophase carbon

pitches, elastic constants were estimated to be of the

Figure 3. (a) Scaled critical wavelength lc/lR as a function of
the dimensionless energy ratio K/ac; the dimensionless
number K/ac is the ratio of the bulk elastic energy to the
isotropic surface energy, for the three nematic textures.
In both plots, the reference horizontal line corresponds to
the Rayleigh instability threshold for isotropic materials.
The symbol lR is the critical Rayleigh wavelength given
in equation (41). The figure shows that Frank elasticity
stabilizes the axial and radial fibres, but destabilizes the
onion texture. (b) Same as (a) but 0v

K
ac v1. The figure

shows that for this parametric window, Frank elasticity
has the strongest impact on stability of the radial texture.
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order of 1028 J m21 [36]. In addition, near the nematic/

smectic A transition, the bend elastic constant diverges

[22, 37]. Therefore, with K~1028 J m21, the dimension-

less parameter K
ac approaches one for micrometer-radius

fibres, and hence figure 3 (b) focuses on the small K/ac
regime. This figure shows that in this parametric

window the strongest effect of Frank elasticity is on

the stabilization of the radial texture.

3.2. Transient energy analysis

Figure 4 summarizes the complete phenomenology of

the two Frank elasticity instability mechanisms in the

transient energy analysis. The stabilizing surface tilting

mechanism, MT, contributes to the distortion energy

through the local time derivative and acts in the axial

fibre by splay–bend modes and in the radial fibre by

bend modes, created on the rz-plane. The destabilizing

surface displacement mechanism, MD, contributes to

the distortion energy through the convective change

and acts in the onion fibre (uniform azimuthal bend

modes) and in the radial fibre (uniform radial splay

modes), in the rh-plane.

We next present the transient integral energy balance

equation for the nematic fibre, derive the instability

criteria for the three representative nematic textures

(see figure 2), and discuss in detail the physical and

mathematical aspects of the process.

For the inviscid liquid fibre, the velocity field can be

obtained by introducing the velocity potential and

solving Laplace’s equation of the velocity potential,

which satisfies the continuity equation [2, 38, 39]:

ur r, z, tð Þ~j0a exp atð Þcos kz½ � I1 kr½ �
I1 ka½ � ,

uz r, z, tð Þ~{j0a exp atð Þsin kz½ � I0 kr½ �
I1 ka½ � :

ð64Þ

Using this velocity field in equation (64), the rate of

change of kinetic energy in (26) is calculated in a unit

wavelength l~ 2p
k

to order j2
0 asð

V

L
Lt

1

2
ru:u

� �
dV~j2

0a3 exp 2atð Þ 2p
2ra

k2

I0½ka�
I1½ka� : ð65Þ

By assuming no surface shear, the surface integral term

in equation (26) is rewritten as [25]ð
A

N:t:u dA~

ð
A

+s
:tseð Þ:u dA~

ð
A

{pcur dA ð66Þ

where tse is the surface elastic stress tensor and pc is the

capillary pressure that is the magnitude of the surface

normal force and is given using equations (8) and (17):

{pc~2Hc~{
c

a
z

c

a2
1{k2a2
� �

j0 exp atð Þcos kz½ �: ð67Þ

By substituting equations (64) and (67) into (66), the

surface integral term is obtained in a unit wavelength

l~2p/k to order j2
0 asð

A

N:t:u dA~j2
0a exp 2atð Þ 2p

2c

ka
1{k2a2
� �

: ð68Þ

3.2.1. Capillary instabilities in axial fibres

Referring to equation (35), the distorted director field

in the transient analysis can be written by assuming an

exponential change in time:

nA r, z, tð Þ~iz{j0k exp atð Þsin kz½ � I1 kr½ �
I1 ka½ � ir: ð69Þ

It is noted that the flow driven by the capillary

instability is so weak that the director field is unaffected

by the flow [22].

As expected from the previous section, the rate of

change of Frank distortion energy, Ḟd, is different in

the three nematic textures. For the distorted axial

texture in equation (69), the convective term in (25) is of

higher order and disappears in the linear regime of the

capillary instability while the local time derivative term

contributes to Ḟd, which by using equation (24) is given

by:

_FFd ~K a
{j0k

I1 ka½ � exp atð Þ
� �2

sin kz½ �kI0 kr½ �ð Þ2 z cos kz½ �kI1 kr½ �ð Þ2
n o" #

:

Figure 4. Frank elasticity instability mechanisms in the
transient energy analysis. The stabilizing surface tilting
mechanism MT arises through the local time derivative
and acts in the axial fibre by splay–bend modes and in
the radial fibre by bend modes. The destabilizing surface
displacement mechanism MD arises through the con-
vective change and acts in the onion fibre (uniform
azimuthal bend modes) and in the radial fibre (uniform
radial splay modes).

(70)
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Thus, using equation (70), equation (28) is obtained in a

unit wavelength l~ 2p
k

to order j2
0:ð

V

_FF d dV~2p2Kj2
0ka exp 2atð Þka

I0 ka½ �
I1 ka½ �: ð71Þ

Substituting equations (65), (68) and (71) into (26)

gives a quadratic equation for the dimensionless growth

rate, a�~a ra3
	

c
� �1

2:

a�2{
kað Þ2

2
1{ 2

K

ac
z1

� �
kað Þ2

� �
~0 ð72Þ

where ka is the dimensionless wave number. Solving the

quadratic equation for a*, equation (72), we find

a�~ kað Þ
1{ 2

K

ac
z1

� �
kað Þ2

2

2
664

3
775

1
2

: ð73Þ

Thus, the axial fibres are unstable when the following

inequality is satisfied:

1{ 2
K

ac
z1

� �
kað Þ2 > 0: ð74Þ

The maximum growth rate a�max and the corresponding

wavenumber kamax are obtained by solving equa-

tion (72):

kamax~
1

2 2
K

ac
z1

� �
2
664

3
775

1
2

, a�max~
1

2

1

2 2
K

ac
z1

� �
2
664

3
775

1
2

ð75Þ

which predict the axial fibre breakup into droplets

with a characteristic size of 2p/kamax [40]. Equation (75)

properly reduces to the well known results [38] when

the bulk elastic anisotropy vanishes, i.e. K~0, and the

asymptotic results for the inviscid fibre are

a�max~
1

2
ffiffiffi
2
p , kamax~

1ffiffiffi
2
p : ð76Þ

Solving equation (73) by setting a*~0 gives the cut-off

wave number:

kacutoff~
1

1z2
K

ca

� �1
2

ð77Þ

which is consistent with the critical wavenumber in the

static energy analysis, equation (40).

Figure 5 shows the dimensionless growth rate curves

a* as a function of dimensionless wavenumber ka at

K/ac~0.1, 1, 5 for the axial fibre. Not only kacutoff but

a�max and kamax decrease as K/ac increases, meaning that

the bulk elasticity suppresses the axial fibre instability

by increasing the length scale of the capillary instability

as well as slowing down its growth rate.

Consistent with the static energy analysis, the effect

of Frank distortion energy change Ḟd on the capillary

instability for the transient energy analysis is now

explained in detail (see figure 4). From equation (71), it

is seen that the net effect of Frank elasticity is to

stabilize the fibre by increasing splay–bend elastic

energy. The distorted axial texture contributes to

Ḟd only through the local time derivative term in

equation (25). The stabilization mechanism MT,

through splay–bend distortions in the rz-plane is

generated by changes in the surface orientation, and

hence no contribution arises from the convective term

which is related to changes in surface displacement.

3.2.2. Capillary instabilities in onion fibers

For the onion texture, the director field remains

constant and the local time derivative term in

equation (25) is zero while the convective term con-

tributes to the Frank distortion energy change Ḟd. In

order to simplify the calculation of Ḟd, we adopt

standard approximations for the velocity field used

previously in the literature [39]. From equation (64), it

is evident that uz is only weakly dependent on r and

is assumed to be only a function of z while ur is

approximated linearly dependent on r. These approx-

imations are considerably accurate when kav1. Then,

the velocity field for the inviscid liquid is given as [39]

ur r, z, tð Þ~j0a exp atð Þ r

a
cos kz½ �,

uz z, tð Þ~{j0a exp atð Þ 2

ka
sin kz½ �

ð78Þ

which satisfies the continuity equation. Using equations (24)

Figure 5. Dimensionless growth rate curves a* as a function
of dimensionless wavenumber ka for K/ac~0.1, 1, 5 for
the axial fibre. Frank elasticity decreases the growth rate
and increases the wavelength of the fastest growing mode.
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and (78), it is found that

_FF d ~{K
j0a exp atð Þ

a

cos kz½ �
r2

: ð79Þ

Thus, using equation (79), equation (28) is obtained in a

unit wavelength l~2p/k to order j2
0 byð

V

_FF d dV~{2p2j2
0a exp 2atð ÞK

a

1

ka
: ð80Þ

Substituting equations (65), (68) and (80) into (26) gives

a quadratic equation for the dimensionless growth rate:

a�2{
kað Þ2

2
1z

K

ac
{ kað Þ2

� �
~0: ð81Þ

Solving the quadratic equation for a*, equation (81), we

find

a�~ kað Þ
1z

K

ac
{ kað Þ2

2

2
664

3
775

1
2

: ð82Þ

Thus, the onion fibres are unstable when the following

inequality is satisfied:

1z
K

ac
{ kað Þ2 > 0: ð83Þ

The maximum growth rate a�max and the corresponding

wavenumber kamax are obtained by solving equation (81):

kamax~

1z
K

ac

2

0
BB@

1
CCA

1
2

, a�max~

1z
K

ac

2
ffiffiffi
2
p ð84Þ

which predict the onion fibre break-up into droplets

with a characteristic size of 2p/kamax [40]. Equation (84)

properly reduces to the well known results, equa-

tion (76), when the bulk elastic anisotropy dependence

vanishes, i.e. K~0. Solving equation (82) by setting

a*~0 gives the cut-off wave number:

kacutoff~ 1z
K

ca

� �1
2

ð85Þ

which is consistent with the critical wave number in the

static energy analysis, equation (48).

Figure 6 shows the dimensionless growth rate curves

a* as a function of dimensionless wavenumber ka at

K/ac~0.1, 1, 5 for the onion fibre. Not only kacutoff but

a�max and kamax increase as K/ac increases, meaning that

the bulk elasticity promotes the onion fibre instability

by decreasing the length scale of the capillary instability

as well as increasing its growth rate. From equa-

tion (80), it is seen that the net effect of Frank elasticity

is to destabilize the fibre by decreasing the azimuthal

bend Frank elastic energy. The surface displacement

that leads to a decrease in the azimuthal bend energy

contributes to Ḟd only through the convective term

in equation (25). Under the destabilization mechanism,

MD, the destabilizing azimuthal bend modes arise from

changes in the location of the surface, and hence no

contribution from local time derivatives appears. The

local time derivative contribution is, as noted above

(see figure 4), only ignited by couplings between surface

orientation and the director field. Since the director is

uncoupled from surface orientation, only positional

effects promote the instability.

3.2.3. Capillary instabilities in radial fibres

Referring to equation (55), the distorted director field

in the transient analysis can be written by assuming an

exponential change in time:

nR r, z, tð Þ~irzj0k exp atð Þsin kz½ �
sin ln

r

r0

� �

sin ln
a

r0

� � iz: ð86Þ

It is also noted that the flow driven by the capillary

instability is so weak that the director field is not

affected by the flow.

For the radial texture in equation (86), both the

convective and the local time derivative terms in (25)

remain and contribute to the Frank distortion energy

change Ḟd, which is given using equations (24) and (78):

_FFd ~K {a exp atð Þ j0

a
cos kz½ � 1

r2
za exp 2atð Þ j2

0k2

sin2 ln
a

r0

� � sin2 kz½ �
cos2 ln

r

r0

� �
r2

2
664

3
775:

Thus, using equation (87), equation (28) is obtained in a

Figure 6. Dimensionless growth rate curves a* as a function
of dimensionless wavenumber ka at K/ac~0.1, 1, 5 for
the onion fibre. Frank elasticity increases the growth rate
and decreases the wavelength of the fastest growing mode.

(87)
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unit wavelength l~2p/k to order j2
0 byð

V

_FFd dV~{2p2a exp 2atð Þj2
0

K

a

1

ka

1{k2a2 1

2

ln
a

r0

sin2 ln
a

r0

� �z

cos ln
a

r0

� �

sin ln
a

r0

� �
2
664

3
775

8>><
>>:

9>>=
>>; :

ð88Þ

Substituting equations (65), (68) and (88) into (26) gives

a quadratic equation for the dimensionless growth rate:

a�2{
kað Þ2

2
1z

K

ac

� �
{ kað Þ2 1z

1

2

K

ac

ln
a

r0

sin2 ln
a

r0

� �z

cos ln
a

r0

� �

sin ln
a

r0

� �
2
664

3
775

8>><
>>:

9>>=
>>;

2
664

3
775~0:

Solving the quadratic equation for a*, equation (89), we

find

a�~
kaffiffiffi

2
p 1z

K

ac

� �
{ kað Þ2 1z

1

2

K

ac

ln
a

r0

sin2 ln
a

r0

� �z

cos ln
a

r0

� �

sin ln
a

r0

� �
2
664

3
775

8>><
>>:

9>>=
>>;

2
664

3
775

1
2

:

Thus, the radial fibres are unstable when the following

inequality is satisfied:

1z
K

ac

� �
{ kað Þ2 1z

1

2

K

ac

ln
a

r0

sin2 ln
a

r0

� �z

cos ln
a

r0

� �

sin ln
a

r0

� �
2
664

3
775

8>><
>>:

9>>=
>>; > 0:

Meanwhile, equation (90) properly reduces to the well

known result of Rayleigh when the bulk elastic

anisotropy dependence vanishes, i.e. K~0:

a�~
kaffiffiffi

2
p 1{ kað Þ2
h i1

2 ð92Þ

and thus equation (76) is also obtained for K~0.

Solving equation (90) by setting a*~0 gives the cut-off

wave number:

kacutoff~

1z
K

ac

1z
1

2

K

ac

ln
a

r0

sin2 ln
a

r0

� �z

cos ln
a

r0

� �

sin ln
a

r0

� �
2
664

3
775

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

1
2

ð93Þ

which is consistent with the critical wave number in the

static energy analysis, equation (60).

Figure 7 shows the dimensionless growth rate curves

a* as a function of dimensionless wave number ka, for

K/ac~0.323, 1, 5 for the radial fibre. As K/ac increases,

kacutoff and kamax decrease while a�max decreases until

K/acy1 and then increases, meaning that the bulk

elasticity contains two competing effects on the radial

fibre instability: (i) the suppressing effect shown by

increasing the length scales of the capillary instability

and (ii) the non-monotonic maximum growth rate.

Surface tilting on the radial fibre ignites stabilizing bend

modes on the rz-plane. These bending distortions under

the MT mechanism increase the energy and are thus

stabilizing. On the other hand, the initial splay distor-

tion is destabilizing under the MD mechanism and

promotes the instability. The stabilizing bend modes are

driven by the orientation of the fibre surface (surface

tilting), while the destabilizing splay modes act through

changes in the position of the surface (surface displace-

ment). The destabilizing splay modes in the radial

textures are equivalent to the destabilizing azimuthal

bend modes in the onion texture since they are control-

led by the MD mechanism (see figure 4). On the other

hand, the stabilizing bend modes in the radial texture

are equivalent to the stabilizing splay–bend modes in

the axial texture since they are controlled by the MT

mechanism (see figure 4).

In partial summary, when splay and/or bend

distortions are created by surface tilting they tend to

stabilize the fibre by increasing the energy, and when

splay and/or bend distortions are uncoupled from the

surface orientation, the surface displacement may

destabilize the fibres by decreasing the Frank distortion

energy. In the transient integral energy analysis, surface

tilting effects enter through local time derivatives while

surface displacement effects enter through convective

terms, see equation (25).

3.3. Bulk elastic energy contributions to capillary

instabilities

This section briefly compares the Frank distortion

energy contribution for each texture in the static energy

Figure 7. Dimensionless growth rate curves a* as a function
of dimensionless wavenumber ka at K/ac~0.323, 1, 5 for
the radial fibre. Frank elasticity increases the wavelength
of the fastest growing mode. On the other hand, the
maximum growth rate is non-monotonic, first decreases
and then increases with increasing K/ac.

(89)

(90)

(91)
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analysis to that in the transient energy analysis, with

the objective of elucidating the dual nature of orienta-

tion gradients in growing peristaltic modes, as discussed

in the previous section.

By making use of the divergence theorem and

equations (24) and (25), equation (28) is rewritten as

dF d

dt
~

ð
V

LFd

L +nð Þ :
L +nð ÞT

Lt
dVz

ð
S

N:uFd dA: ð94Þ

In statics, the change of the distortion free energy

corresponding to equation (94) can be expressed using

the variational symbol d:

dF d~

ð
V

LFd

L +nð Þ : d +nð ÞT dVz

ð
S

N:dsFd dA ð95Þ

where ds is the variation of the position vector at the

surface.

From equations (94) and (95), it is clearly seen that in

the linear regime considered here, the first integral

represents the surface tilting contribution to the Frank

distortion energy in the presence of director distortions,

while the second represents the surface displacement

contribution. The difference between the static and

the transient analyses comes from time dependence of

the system. Without time dependence, the free energy

change is obtained for the system before and after

surface disturbances as shown in the statics results. In

both statics and dynamics, the stabilizing MT mechan-

ism is included in the first integral while the destabiliz-

ing MD mechanism is in the second integral. The

correspondence between the statics and dynamics is

shown by the consistency between results in equa-

tions (37), (46) and (58), and results in (71), (80) and

(88). In all textures, the static thresholds, shown in

equations (40), (48) and (60), are consistent with the

corresponding cut-off results from the transient analy-

sis, shown in (77), (85) and (93). This consistency

establishes the correctness of the two distinct

approaches.

4. Conclusions

Capillary instabilities in nematic fibres reflect the

anisotropic nature of liquid crystals. Classical theories

of liquid crystalline materials are used to develop static

and transient thermodynamic models of linear axisym-

metric capillary instabilities driven by surface area

reduction. Since the bulk gradient elasticity of nematics

contains orientation gradient contributions that couple

with surface distortions, the thermodynamic models on

three representative nematic fibre textures identify the

most likely effects. The axial texture tends to stabilize

the fibre by increasing splay–bend elastic energy created

by the surface tilting mechanism. The onion texture

tends to destabilize the fibre by decreasing azimuthal

bend elastic energy created by the surface displacement

mechanism. The peristaltic distortion in the radial

texture creates two competing splay and bend elastic

modes driven by surface displacement and surface

tilting, respectively. By estimating the model parameters

using published data for typical low molecular mass

nematic LC fibres, it is found that the net effect of

Frank elasticity is to increase the length scales of the

capillary instability in the radial fibre. The use of static

and dynamic formulations gives mutually consistent

results, and shows that the role of Frank elasticity in

capillary instabilities is a function of the initial fibre

texture. Splay and/or bend modes on the rz-plane

stabilize the fibre by the surface tilting mechanism while

splay and/or bend modes on the rh-plane destabilize

it by the surface displacement mechanism. Gradient

elasticity offers another tool to control soft evolving

surfaces.
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